Modelling the post-failure stage of rainfall-induced landslides of the flow type

L. Cascini, S. Cuomo, M. Pastor, and C. Sacco

Abstract: The geomechanical modelling of failure and post-failure stages of rainfall-induced shallow landslides represents a fundamental issue to the proper assessment of failure conditions and recognizes the potential for long travel distances of the failed soil masses. Considering that these phenomena are among the most catastrophic natural hazards, as a contribution to the topic this paper discusses the potential of a hydromechanical coupled finite element model (FEM) to analyze the post-failure stage using an advanced constitutive model. In particular, simple undrained triaxial tests and experimental evidence of centrifuge tests are reproduced first, for both loose and dense soils. Then, two slope scale benchmarks are analyzed in the cases of vertical downward or horizontal water seepage and for both loose and dense soils. Compared with results obtained through standard limit equilibrium analyses, the coupled FEM provides a new comprehensive framework for failure and post-failure scenarios that includes a significant reduction of mean effective stresses, also in the case of a loose soil slope subjected to vertical downward water seepage. The obtained results are particularly encouraging because they outline the possibility to analyse both the failure and post-failure stages in a unique framework. Moreover, the numerical analyses indicate that the post-failure mechanisms are intimately tied to specific predisposing factors and boundary conditions, rather than to a single mechanical or state parameter of soil, such as, for instance, the soil relative density.

Key words: landslide, flow, failure, post-failure, acceleration, modelling.

Introduction

Landslides of the flow type still pose difficult challenges to the combined geomechanical modelling of the failure and post-failure stages (Cascini et al. 2010) due to their mechanical characteristics. Particularly, the failure stage is characterized by the formation of a continuous shear surface through the entire soil mass (Leroueil 2001) or, alternatively, plastic strains may affect a large amount of soil originating from a so-called “diffuse” failure (Darve and Laouafa 2000; Pastor et al. 2004); then, post-failure stage is represented by the rapid generation of large plastic strains (Hungr 2004), often accompanied with a reduction of pore-water pressures, which leads to a drastic increase of the landslide mobility. As a consequence, before failure onset, small soil deformations and displacements are measured (in coarse grained soils, soil deformations are even negligible) while at failure and during the post-failure stage, soil deformations rapidly increase up to a number of centimetres or metres. After that, the propagation stage occurs and displacements may attain values up to some kilometres, i.e., one or two orders of magnitude greater than the landslide source area dimension.

To date, valuable tools have been developed to model either failure (Leroueil 2001; Pastor et al. 2007, Sanavia 2009; among others) or propagation (McDougall and Hungr 2004; Pastor et al. 2009; among others) and only few approaches (e.g., Pastor et al. 2002) refer to a unique mathematical framework to derive the governing equations, which are then separately solved for analysing the triggering or propagation stage. The lack of a unified approach causes several difficulties and uncertainties in an appropriate hazard assessment related to a wide class of phenomena...
that can occur in both saturated and unsaturated conditions. In this regard, a good example is provided in Fig. 1 that shows a picture of two landslides that occurred at Pizzo d’Alvano massif in May 1998 (Cascini et al. 2008); the first landslide (Fig. 1a) turned into a flow, later travelling about 1 km away; on the contrary, the second slide did not evolve into a landslide of the flow type and it was characterized by moderate displacements (Fig. 1b).

Considering the relevance of the topic, the aim of the present paper is to propose the use of new enhanced tools for geomechanical modelling. To this purpose, the available approaches for post-failure analysis are firstly discussed with some remarks proposed for both mechanical aspects and mathematical issues. Then, a hydromechanical coupled Finite element model (FEM) (Pastor et al. 1999, 2002) is summarized briefly and then proposed for modelling both the failure and post-failure stages within a unitary framework. Particularly, experimental evidence derived from centrifuge tests is reproduced through a geomechanical modelling that is then extended to simple general slope schemes subjected to different water seepage conditions in both cases of loose and dense granular soils.

Literature review on post-failure stage

Post-failure stage is an outstanding topic because it discriminates among different types of phenomena. In fact, it is quite evident that the possibility of a landslide achieving high velocities depends on: (i) the initial acceleration of the failed mass and (ii) subsequent transformation in a landslide of the flow type.

Anyhow, the acceleration of the failed mass during the post-failure stage is associated with different mechanisms. Many authors outline the development of total or partial undrained conditions as the main cause of high pore-water pressures upon shearing. In particular, for loose unsaturated soils, volumetric collapse is discussed by Yasufuku et al. (2005), Bilotta et al. (2006), and Olivares and Damiano (2007), and it is observed in constant-shear drained triaxial tests upon wetting (Anderson and Riemer 1995; Dai et al. 1999; Chu et al. 2003; Olivares and Damiano 2007). For loose saturated soils, static liquefaction is introduced by Wang et al. (2002), van Asch et al. (2006), and Olivares and Damiano (2007), and observed in undrained triaxial tests (Lade 1992; Yamamuro and Lade 1998; Chu et al. 2003) as well as in undrained ring shear tests under controlled strain rates (Wang et al. 2002). Particularly, the build-up of pore pressures is shown to be relevant for soils having low density index (Eckersley 1990; Iverson 2000; Wang and Sassa 2001), fine grain size (Wang and Sassa 2003), low hydraulic conductivity (Iverson et al. 1997; Lourenco et al. 2006), and subjected to high deformation rate (Iverson et al. 1997).

Most of the above findings are obtained through laboratory tests, such as isotropically consolidated undrained triaxial tests (ICU) (Chu et al. 2003), anisotropically consolidated undrained triaxial tests (ACU) (Eckersley 1990), and constant shear drained triaxial tests (CSD) (Chu et al. 2003), even though strain localization is more important under plane-strain or three-dimensional conditions compared to triaxial conditions, as recently discussed by Wanatowski and Chu (2007, 2012). It is worth noting that all laboratory tests refer to idealized drainage conditions.

In contrast, a direct measurement of pressures and displacements in real slopes is rare, indeed only possible for (i) monitored sites during the occurrence of landslides and (ii) artificially induced failure in real slopes. In both cases, measurements are not repeatable.

Further insights derive from alternative approaches that are based on direct observation of pore-water pressures and stresses in landslides artificially induced in slope models at a reduced scale (also called flume test). Through this approach, information can be obtained on failure and post-failure (Eckersley 1990); however, these experiments are expensive and as they reproduce the real processes at a greatly reduced scale they may be irrespective of the full-scale slope behaviour. For instance, a large difference in stress levels may exist between model and prototype; in particular, the eventual capillary suction is out of proportion with its self-weight stress, allowing the model slope to remain steeper than would be possible at higher effective stress levels. Nevertheless, complex groundwater conditions, such as downward rainfall infiltration from ground surface and (or) a downwards—upwards water spring from the bedrock to the tested soil layer, can be analysed through these tests (Lourenco et al. 2006).

A more recent approach is based on centrifuge tests that reproduce stress levels similar to those experienced by a real slope. Centrifuge tests — except for some drawbacks such as the high costs and the availability of sophisticated equipment — combine the advantages of highly instrumented slopes (such as full or reduced scale models) with the potential of geometrical configurations realistically reproducing the in situ conditions. Particularly, Take et al. (2004) point out that the transition from slide to flow is caused by local failures producing a variation in the slope geometry. This mechanism is related to transient localized pore-water pressures that are not associated with the development of undrained conditions, but originated from the combination of particular hydraulic boundary conditions and stratigraphical settings. Experimental evidence shows that the transition from slide to flow can occur both for loose and dense soils and it can also correspond to decreasing pore-water pressures during the post-failure stage. These results have been later confirmed also by other researchers through small-scale flume tests (Lourenco et al. 2006) or centrifuge tests (Lee et al. 2008; Ng 2009; among others).
Based on previous considerations, mathematical modelling may be outlined as a powerful tool because, in principle, it can be used to investigate a wide variety of different scenarios even though the modelling of the post-failure stage is poorly addressed in the literature and the only available contributions refer to triggering factors that differ from rainfall, such as earthquake (Pastor et al. 2004) and kinematic or static perturbations (Laouafa and Darve 2002). For this reason, the basic concepts of the approach used are hereafter summarized and then applied to different benchmark cases to estimate the reliability of the numerical modelling to reproduce well-known experimental results.

Proposed methodology

Conceptual reference scheme

Based on well-established experimental evidence from laboratory and centrifuge tests, Cascini et al. (2010) propose a conceptual reference scheme to point out some key differences among different types of landslides during their failure and post-failure stages. Particularly, referring to different types of post-failure stages, Cascini et al. (2010) outline the existence of three main classes of phenomena: slide, flowslide, and slide to flow. Slide is a slope failure occurring under pore-water drained conditions. In contrast, a flowslide occurs when partially or totally undrained conditions develop and this is the typical case of loose saturated soil upon shearing (i.e., static liquefaction); flowslides are associated with the increase of pore-water pressures. Finally, the transition from a slide to a flow is caused by local failures producing a variation in the slope geometry, which, in turn, determines an unbalanced driving force; this corresponds to a sudden increase of deviatoric stress at almost constant effective mean pressures.

In the authors’ opinion, the features of the post-failure stage are strictly tied to the failure type and, in principle, the two stages should be analysed with a unitary approach. Moreover, the value attained by pore-water pressures during the post-failure stage is a key issue for engineering purposes because it determines the soil mobility during the subsequent propagation stage. Therefore, some insights are hereafter proposed to individuate typical scenarios corresponding to the development of high pore-water pressures in simple general slope schemes subjected to groundwater rainfall infiltration. It is important to note that a suitable approach should allow properly considering the twofold issue of rainfall infiltration. It is important to note that a suitable approach should allow properly considering the twofold issue of rainfall infiltration.

Mathematical model

The adopted hydromechanical coupled model mainly derives from the fundamental contribution of Zienkiewicz et al. (1980, 1999) that considers a solid skeleton and two fluid phases, water and air, which fill the voids. The skeleton is made of particles of density ρ_s with porosity n (volume percent of voids in the mixture) and void ratio ε (volume of voids per unit volume of solid fraction). Movement of the fluid is considered as composed of two parts, the movement of soil skeleton and motion of the pore water relative to it. The total stress tensor acting on the mixture can be decomposed as the sum of an effective stress tensor σ' acting on soil skeleton and a hydrostatic pore pressure term p_w, which for unsaturated soils with zero air pressure corresponds to the averaged pore pressure $\bar{p} = S_p n_s$, where S_p is the soil water saturation degree.

The governing equations of the model are reported by Cascini et al. (2010) and they consist of (i) balance of momentum equation for the mixture, (ii) balance of mass of the pore water, (iii) mass conservation for the pore fluid, and (iv) balance of momentum of the pore fluid. Those equations have to be complemented by a kinematic relation linking velocities to rate of deformation tensor and by a suitable constitutive model. The latter is the Pastor–Zienkiewicz (PZ) model, which is suitable to accurately describe the behaviour of either loose or dense granular soils, both in drained and undrained conditions, along complex stress paths. In the PZ model, derived from the theoretical fundamentals of the generalized plasticity theory (Pastor et al. 1990), it is assumed that plastic deformations may occur upon either loading or unloading and they are derived without the need to define (i) yielding surface, (ii) plastic potential surface, and (iii) consistency law. In detail, the model is completely defined once the following quantities are fixed: (i) three directions (load direction σ_{ii}, unload direction σ_{ii}, and neutral load direction n_i), (ii) two scalars (plastic moduli H_1 and H_2), and (iii) the elastic tensor D. Globally, 12 parameters are defined ($K_{so}, G_{so}, M_s, H_{so}, H_{wo}, \sigma_{so}, \sigma_{wo}, B_1, B_0, \gamma_0, \gamma_u$); K_{so} and G_{so} are, respectively, the bulk modulus and shear modulus, M_s and M_w represent in the $q-p'$ space (where q and p' are the deviatoric stress and mean effective stress, respectively) the slope of the critical-state line and the slope of instability line (Chu et al. 2003), H_1 and H_{wo} are hardening modulus in loading and unloading. Calibration of these parameters can be performed through standard triaxial tests according to the procedures indicated by Zienkiewicz et al. (1999) who also provide the values of some constants incorporated in the model, named a_1, c_1, B_1, B_0, γ_0 (whose values are taken from Pastor et al. 1990). It is worth noting that M_1 is univocally related to the soil relative density as suggested by Pastor et al. (1990). The governing equations of the hydromechanical coupled model are implemented in the FEM code named “GeHoMadrid FEM” whose details are reported in Pastor et al. (1999, 2002).

Testing proposed approach

Benchmarks at REV scale

The hydromechanical response of a soil specimen during undrained triaxial tests is simulated here referring to the experiments of Eckersley (1990). The mechanical parameters are reported in Table 1 and are calibrated according to the procedure suggested by Zienkiewicz et al. (1999). Figure 2 shows the achieved results that match the experimental evidence; particularly, numerical modelling can reproduce either a strain-softening behaviour corresponding to the static liquefaction (very loose curve) or a strain-hardening soil response (very dense curve) that is typical of saturated dense sands upon undrained triaxial stress paths. The capability of the model to discriminate between the different behaviour of loose and dense soils is also outlined in Fig. 2c that shows the mean effective stress vanishing as the equivalent plastic strain, $\varepsilon_p = (2/3a'\cdot e')^{1/2}$ (where a' is the plastic deviatoric strain tensor), increases in the case of “loose soil” while the opposite for “dense soil”. The results of the simulated undrained triaxial tests are used as a reference case for discussion.

Benchmarks from centrifuge tests

Experimental evidence and limit equilibrium analysis

Moving from REV to slope scale, it is important to individuate simple general benchmarks to be associated with either standard or advanced approaches.

In the tests performed by Take et al. (2004), the slope configuration of Fig. 3a is used consisting in a layered shallow deposit 33° inclined over impervious bedrock. Due to permeability differences (coarser layer soils are more permeable than the upper ones), and imposed hydraulic boundary conditions (consisting in a water spring at the upper right corner of the model), transient groundwater seepage is observed in both layers and at the toe of the slope model.

In the experiments, due to the increase of pore-water pressures, a slope failure occurs and the sudden acceleration of the failed
mass is measured for both cases of loose and dense soils (Fig. 3b). From the experimental evidence, the existence of different stages of the observed landslides can be outlined. It is worth noting that the acceleration of the failed mass (i.e., post-failure stage) corresponds to the decrease of pore-water pressures, mainly due to a concurrent modification of slope geometry (Fig. 3c).

To investigate the potential of standard tools, such as limit equilibrium methods (LEMs), to adequately reproduce the above

Table 1. Parameters of constitutive Pastor–Zienkiewicz (PZ) model used for simulating the experiments of Eckersley (1990).

<table>
<thead>
<tr>
<th>Case</th>
<th>γ_s (kN/m³)</th>
<th>e</th>
<th>D_r</th>
<th>σ_{eff} (kPa)</th>
<th>K_0 (kPa)</th>
<th>G_0 (kPa)</th>
<th>M_f ($\varphi = 40^\circ$)</th>
<th>M_g (IL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very loose</td>
<td>12.7</td>
<td>0.50</td>
<td>0.47</td>
<td>50</td>
<td>3.3e⁴</td>
<td>2.0e⁴</td>
<td>1.636</td>
<td>0.772</td>
</tr>
<tr>
<td>Loose</td>
<td>13.4</td>
<td>0.43</td>
<td>0.58</td>
<td>50</td>
<td>3.7e³</td>
<td>2.2e³</td>
<td>1.636</td>
<td>0.941</td>
</tr>
<tr>
<td>Dense</td>
<td>13.4</td>
<td>0.41</td>
<td>0.86</td>
<td>50</td>
<td>2.0e⁴</td>
<td>1.2e⁴</td>
<td>1.636</td>
<td>1.407</td>
</tr>
<tr>
<td>Very dense</td>
<td>13.4</td>
<td>0.21</td>
<td>1.00</td>
<td>50</td>
<td>6.5e⁴</td>
<td>3.5e⁴</td>
<td>1.636</td>
<td>1.636</td>
</tr>
</tbody>
</table>

Note: $\gamma_s = 6e^3; \gamma = \gamma_s = 2. \sigma_y = 0.45; \beta_0 = 4.2$ and $\beta_1 = 0.2. \gamma_s$, solid grain density; e, void ratio; D_r, relative density; σ_{eff}, mean effective stress; K_0, bulk modulus; G_0, shear modulus; M_g, slope of critical state line in $q-p'$ space; φ, friction angle; M_f, slope of instability line in $q-p'$ space; φ_u, slope of the instability line in the Mohr plane; H_0, hardening modulus.

Fig. 2. Mechanical behaviour of loose and dense soils used by Eckersley (1990): (a) experimental evidence, (b) numerical results, and (c) computed equivalent plastic strain versus ratio of mean effective stress to its initial value. ε_{pl}, equivalent plastic strain; φ', friction angle.

Fig. 3. Observed behaviour of centrifuge slope model for loose and dense soils: (a) centrifuge model, (b) displacement measured at PIV1, and (c) pore-water pressures measured at PPTT1 (modified from Take et al. 2004).
mentioned centrifuge tests, a proper set of scale relationships is taken into account between the centrifuge model (Fig. 3) and the equivalent prototype (Fig. 4a); scale relationships are related to the acceleration factor \(N \) used in the centrifuge tests. Consequently, the equivalent prototype is characterized by time and length scales multiplied by \(N \) while mechanical properties (e.g., friction angle and permeability) and pressure-stress levels are equal to those acting during the tests. In their experiments, Take et al. (2004) use a factor \(N \) equal to 30 and the equivalent prototype is shown in Fig. 4a and it reproduces the upper coarser soil layer of the centrifuge model. Take et al. (2004) also provide information on both groundwater conditions observed at failure onset and soil mechanical properties; the latter ones were also investigated through laboratory experiments described in GEO (1999) and Ng et al. (2004).

The limit equilibrium analyses are developed using the methods of Janbu (1954) and Morgenstern and Price (1965). The achieved results show that the slip surface with the minimum factor of safety individuates a soil volume that strictly corresponds to the highest values of the displacement field measured during the experiments (Fig. 4b). In conclusion, this simplified approach in some way allows interpretation of the experimental results and it also outlines the severity of slope geometry and hydraulic boundary conditions that cause a strong reduction of the safety factor; however, it is not possible to provide any distinction between the case of loose and dense soil.

Hydromechanical coupled stress–strain analyses

The same centrifuge tests are here analysed using the proposed mathematical approach (section titled "Proposed methodology") and referring to the definitions of failure and post-failure given in the “Introduction”. In the numerical analyses an unstructured mesh is used with triangular elements on average not larger than 0.4 m. Adequate kinematic and hydraulic boundary conditions are selected to best reproduce the conditions imposed during the tests (Fig. 5). Particularly, a null pore-water pressure value is assumed at point E — corresponding to the water table level observed at failure during the tests — to reproduce the raising of the water table in the upper soil layer. In the FEM analysis, pore-water pressure is allowed to change in space and time, starting from an initial value of ~5 kPa throughout the slope model. This is adequately taken into account referring to Bishop’s stresses (for details see Pastor et al. 2002, 2007). However, for the sake of simplicity, numerical analyses are performed in the hypothesis of fully saturated conditions and the version used of the PZ constitutive model fits this hypothesis. Of course, the analyses could be extended to the case of unsaturated conditions, but this is beyond the scope of the present paper.

The soil mechanical properties are reported in Table 2 and they are either taken from GEO (1999), Ng et al. (2004), and Take et al. (2004), e.g., saturated soil unit weight \(\gamma_{sat} \); \(M_d \) and \(M_p \) or indirectly estimated and/or calibrated, e.g., saturated conductivity \(k_{sat} \), Young’s modulus \(E \), ratio of deviatoric stress \(q \) to mean effective stress \(\sigma' \) (\(\eta \)), \(H_{vr} \) comparing the experimental evidence and the numerical results. It is worth noting that in Table 2 different values of \(M_r \) are assumed that are obtained from different values of relative soil density while the same critical friction angle \(\phi_{cr} \) and bulk modulus \(K_{vcr} \) are considered for both loose and dense soils. This strong assumption is aimed at emphasizing, in a limit case, the role played by soil porosity as a fundamental factor for slope behaviour upon failure and beyond.

Hydromechanical coupled quasi-static analyses are performed to take into account the coupling between the solid skeleton and pore fluid. Numerical results and experimental evidence are compared referring to the following quantities: (i) “equivalent centrifuge” time \(t_{centr} \), i.e., time relative to the prototype (numerical model) divided by the factor \(N \), which can be directly compared with those measured in centrifuge tests; (ii) “centrifuge” displacements \(\text{displ}_{centr} \) computed in the same way; (iii) pore-water pressures and effective stresses as computed from the numerical modelling. Simulated plastic strains significantly differ in the case of loose and dense soil (Fig. 6) for both the value (larger for loose soil) and extent of the affected zone. In the case of loose soil, “diffuse” plastic strains are simulated, firstly at the toe of the slope (Fig. 6a),
and then they involve a larger amount of the slope as time elapses. For dense soil (Fig. 6b), plastic strains appear firstly at the toe of the slope and then they are “localized” along a slip surface where plastic strains accumulate as the process evolves. The above mentioned differences depend only on the soil relative density values as all the other soil mechanical properties are assumed to be equal in the two cases. However, apart from the different type of failure, i.e., diffuse or localized, a different time evolution is also outlined (Fig. 7a). For loose soil, the failure stage is shorter because higher excess pore-water pressures rapidly accumulate in the slope until it fails. Conversely, in the case of dense soil, both the pre-failure stage (mainly corresponding to elastic strains) and the failure stage are longer in time. These differences are also evidenced by the computed stress paths and displacements in Figs. 7c and 7d. Globally, a slower slope response is observed for dense soil and this result is in complete agreement with the experimental evi-

Table 2. Soil mechanical parameters for simulation of centrifuge test.

<table>
<thead>
<tr>
<th>Case</th>
<th>γ_{sat} (kN/m3)</th>
<th>e</th>
<th>D_e</th>
<th>σ_{so}^e (kPa)</th>
<th>K_0 (kPa)</th>
<th>G_0 (kPa)</th>
<th>M_s</th>
<th>M_r</th>
<th>k_{sat} (m/s)</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense (D)</td>
<td>14.0</td>
<td>0.32</td>
<td>0.6</td>
<td>10</td>
<td>$11.5e^3$</td>
<td>25e^3</td>
<td>1.375</td>
<td>0.825</td>
<td>10^{-4}</td>
<td>20</td>
</tr>
<tr>
<td>Loose (L)</td>
<td>14.0</td>
<td>0.62</td>
<td>0.4</td>
<td>10</td>
<td>$11.5e^3$</td>
<td>25e^3</td>
<td>1.375</td>
<td>0.350</td>
<td>10^{-4}</td>
<td>1e^{-2}</td>
</tr>
</tbody>
</table>

Note: $H_{sat} = 6e^3; \gamma = \gamma_0 = 2; \alpha_L = \alpha_T = 0.45; \beta_0 = 4.2$ and $\beta_1 = 0.2.$

Fig. 6. Time evolution of equivalent plastic strains computed for (a) loose and (b) dense soils (cases “L” and “D” of Table 2).

Fig. 7. Results for node P of Fig. 5: (a) equivalent plastic strains; (b) pore-water pressures; (c) stress path in the $p’$–q plane; (d) horizontal displacements versus time.
dence of Fig. 3b. These results are further validated observing that in Fig. 3c pore-water pressures decrease after failure in both cases; this process is reproduced in Fig. 7b.

Indeed, minor mismatches among the experimental and numerical results can be outlined: (i) for dense soil, stiffer slope behaviour is outlined in the centrifuge test rather than in the numerical model (Fig. 3b and Fig. 7d); (ii) at failure, higher pore-water pressures are simulated for dense soil rather than for loose soil. Regarding the former aspect, it must be noted that different stiffness values could be easily estimated and introduced in the numerical analyses for dense and loose soils (while they are assumed as equal); differently, the comparison of the obtained results for dense and loose soils could be confusing if not misleading. For the same reason, equal soil conductivity is assumed for both cases of dense and loose soils; assuming lower soil conductivity for dense soil, higher pore-water pressure could be simulated. It is worth noting that the model used also correctly captures the onset of a yielding zone in the upper right corner, as shown by Lee et al. (2008).

As for the post-failure stage, it is of interest to note that, independent of the value of soil relative density, the failed mass accelerates (Fig. 7d), pore-water pressure decreases as, respectively, evidenced by the experimental tests (Figs. 3b and 3c).

New insights on post-failure stage

To evaluate the novelty and potentialities of the proposed approach compared to an uncoupled approach, two simple benchmarks at slope scale are hereafter analysed comparing the standard limit equilibrium analyses with hydromechanical coupled stress–strain analyses.

Particularly, the slope is composed of a homogeneous saturated soil being 10 m high and 27° steep and it is subjected to two different quasi steady-state groundwater seepage conditions, i.e., subhorizontal (case 1) and vertical downwards directed (case 2), which are referred as limit cases of real seepage conditions in the final discussion. Soil mechanical properties are given in Fig. 8 and it is worth mentioning that a small cohesion (1 kPa) is considered in all the numerical simulations to prevent local superficial failures, which are not of interest in the paper being related to the steep slope geometry.

For case 1 (subhorizontal seepage), the imposed hydraulic boundary conditions are:(i) an increasing water total head from 5 to 15 m at point A of Fig. 8, (ii) a maximum pore-water pressure equal to zero at slope surface, and (iii) pore-water pressure equal to zero at boundary DE. Consequently, at the initial stage, a uniform field of nil pore-water pressure is assumed, corresponding to a unity gradient seepage downwards; then, the water table rises and the head isolines become somewhat vertical and correspondingly the seepage velocities become quasi-horizontal. This leads to a general increase of pore-water pressures in the whole slope up to failure onset.

For case 2 (subvertical seepage), the slope is subjected to a vertical groundwater seepage due to the following hydraulic boundary conditions: (i) lateral boundaries impervious, (ii) nil pore-water pressures applied to the whole ground surface, and (iii) imposed pore-water pressures at the lower boundary (0 kPa at the initial stage, later increasing up to 20 kPa with an increment rate of 7e-3 kPa/s). Therefore, the infiltration velocities are always vertical; the hydraulic gradient is slowed down while pore-water pressure values are increased in the slope due to the hydraulic boundary condition at the bottom of the slope.

Limit equilibrium analyses

The results achieved through an uncoupled approach (Cascini et al. 2010) are based on a seepage analysis first and limit equilibrium analyses later. Pore-water pressures are computed through the commercial code SEEP/W (Geoslope 2005) and in Fig. 9 the isolines of total water head are shown at the final step of the analysis; pore-water pressures are used as input data for limit equilibrium analyses performed through the methods of Morgenstern and Price (1965) and Janbu (1954) by using the SLOPE/W code (Geoslope 2005). Several slip surfaces are considered with different shapes and depths and their safety factors are tracked with reference to the computed pore-water pressures.

For case 1, due to a generalized increase of pore-water pressures, factor of safety of the slope decreases in time from the initial value 1.65 up to 1. Particularly, the critical slip surface corresponds to the toe of the slope where high pore-water pressures arise, thus drastically reducing the soil shear strength. For case 2, the initial value of safety factor is higher (1.8) and it decreases less than in the previous case up to the final value 1.6; failure is not predicted in this case.

In conclusion, the standard uncoupled limit equilibrium approach only outlines the importance of the groundwater regime for the attainment of limit equilibrium conditions in these two cases, which are characterized by the same slope geometry.

Hydromechanical coupled stress–strain analyses

For both cases of Fig. 9, stress–strain analyses are performed referring to an unstructured mesh that is composed of 698 triangular elements, with six nodes each; the dimensions of the triangular elements are not larger than 2 m and time steps of about 1 s; the soil mechanical parameters of Table 3 are used.

In the case of a subhorizontal seepage condition (case 1), the results of stress–strain analysis outline that contours of the equivalent plastic strains and their value depend on soil density. For dense soil, plastic deformations are concentrated along a slip surface, thus causing a triggering mechanism for a landslide (Fig. 10). For dense soil, plastic deformations only partially affect the toe of the slope while not causing a soil volume to be mobilized (Fig. 10). The different deformation modes affect the time evolution of the equivalent plastic strains (Fig. 10) and important differences can be observed when \(p'/\rho_0 \) (ratio of the mean effective pressure to its initial value) is plotted versus the equivalent plastic strain (Fig. 10). In fact, for loose soil, \(p'/\rho_0 \) reduces up to 20% while a lower reduction is simulated in the case of dense soil; accordingly, failure is simulated for loose soils while not for dense soils.

Comparing these results with those of LEM analyses for case 1, the outcome is that both methods allow assessing the onset of failure. However, important differences are also outlined: (i) FEM analyses provide a mobilized mass larger than LEM in the case of loose soils and (ii) LEM is a conservative approach for the case of dense soil. It should be pointed out that the comparison of LEM and stress–strain FEM analyses is difficult to justify from a theoretical viewpoint, because LEM disregards the nonassociated flow rule and soil deformations. However, this comparison is meaningful for engineering purposes as both approaches provide the mobilized soil volume that can be quantitatively compared in the framework of engineering forecasting analyses. In addition, the comparison of LEM and FEM outlines the accuracy of LEM for different slope geometries and head water contours.

Stress–strain analyses for the case of loose soil and subvertical groundwater seepage (case 2 of Fig. 9) show that pore-water pressures increase due to the slope deformation; it is interesting to
note that a large soil volume achieves high values of pore-water pressures that cause the slope failure according to a diffuse mode (Fig. 11). Unlike the previous case of Fig. 8, pore-water pressures undergo a generalized increase due to the soil response at REV scale; therefore, a large soil volume is involved in the slope failure. This generalized increase of pore-water pressures does not require the effective mean stress p_{e} to reach a very low value and failure is achieved when $p'_{\text{e}} / p_{\text{e}}$ reduces reach 60% (Fig. 11). Conversely, in the case of dense soils, failure is not simulated despite the same hydraulic boundary conditions have been applied (Fig. 11).

Comparing FEM and LEM results of case 2 and based on previous comments, it is not surprising to note that when using LEM the safety factor is always higher than one (in both the case of loose and dense soil) due to the drastic simplification made at REV scale in the LEM analysis. Conversely, coupled FEM analysis allows: (i) accounting for a more realistic description of soil behaviour at REV scale and (ii) adequately simulating the failure onset and post-failure stage that are both dependent on soil density.

Table 3. Soil mechanical parameters of slope shown in Fig. 9.

<table>
<thead>
<tr>
<th>Case</th>
<th>γ_{sat} (kN/m3)</th>
<th>c</th>
<th>D_{r}</th>
<th>$\sigma_{\text{pl}}^\prime$ (kPa)</th>
<th>K_{0} (kPa)</th>
<th>G_{r} (kPa)</th>
<th>M_{g}</th>
<th>M_{f}</th>
<th>k_{sat} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.84</td>
<td>0.5</td>
<td>0.64</td>
<td>12.8</td>
<td>11.5e^3</td>
<td>25e^3</td>
<td>1.418</td>
<td>0.908</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>2</td>
<td>11.84</td>
<td>0.5</td>
<td>0.47</td>
<td>12.8</td>
<td>11.5e^3</td>
<td>25e^3</td>
<td>1.418</td>
<td>0.657</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

Note: $H_{0} = H_{\text{u}} = 1r^{\infty}$; $\gamma = \gamma_{\text{sat}} = 2e$; $\rho_{\text{g}} = \rho_{\text{f}} = 0.45$; $\beta_{0} = 4.2$; $\beta_{1} = 0.2$.

Discussion of numerical results

An effort to provide some general results is here devoted to the analysis of pore-water pressures variations during the failure and post-failure stages. Particularly, for all the above mentioned cases (soil REV, centrifuge tests, and slope benchmarks), the achieved results are plotted with reference to two dimensionless quantities: (i) $e_{\text{pl}}/e_{\text{pl}}^\text{max}$, i.e., the ratio of equivalent plastic strains to its maximum value during the analysis and (ii) $p'_{\text{e}} / p_{\text{e}}$, the ratio of the mean effective stress to its initial value, later named normalized p' (Fig. 12). This variable $p'_{\text{e}} / p_{\text{e}}$ has been formerly used by Pastor et al. (2007) for detecting, via numerical modelling, the occurrence of soil liquefaction due to earthquake and it is thought to be a useful factor to differentiate among distinct slope responses to the applied hydraulic boundary conditions.

For the dense soil specimen, the normalized p' decreases first and later increases, during the failure stage, accompanied with a very small strain rate; in such a case, this is the only failure mode compatible with the combination of soil mechanical features and imposed boundary conditions to stresses and pore pressures (i.e.,
undrained triaxial loading). In all the remaining cases, p'/p'_0 decreases while failure is approaching. Particularly, for the loose soil specimen a very low value of p'/p'_0 is reached because there is no possibility for the specimen to somehow react against the imposed boundary conditions. Different patterns are drawn for centrifuge tests that, at point P of Fig. 5, exhibit first a drastic reduction of p'/p'_0 (failure stage) due to the severe slope geometry and then a moderate increase of p'/p'_0 (during the post-failure stage) mainly due to a change of slope geometry and consequent increase pore-water pressure; this behaviour is more exacerbated for loose than dense soils. Whereas, a gradual reduction of p'/p'_0 is modelled at point P of Fig. 8, for the case of quasi-horizontal seepage with the lowest value reached for loose soil. Finally, for the case of quasi-vertical seepage, different slope behaviour is simulated with a reduction of p'/p'_0 for loose soils, but not for dense soils. In conclusion, an important mutual interplay among soil REV response, stress conditions (plane-strain or axial symmetric), slope geometry, and hydraulic boundary conditions is shown; this interplay really determines the global slope behaviour.

Concluding remarks

The application of the proposed methodology to both centrifuge evidence and two simple benchmarks highlights some gen-
eral insights. Particularly, it is shown that the slope response is controlled by two different “driving mechanisms”: (i) the generation of excess pore-water pressures and (ii) localization of plastic strains. The former mechanism is typical of loose saturated sands and it controls the soil behaviour at REV scale; in fact, for loose soils, high pore-water pressures are simulated also due to soil deformation. The latter mechanism is typical of dense soils and it acts at slope scale; in this sense, the possibility for localized strains to develop depends on: (i) slope geometry (steep slope), (ii) stress conditions (plain-strain rather than triaxial), and (iii) local boundary conditions (groundwater impoundments) that enhance the local generation of high plastic strains and the subsequent development of a slip surface.

Based on the achieved results it is outlined that: (i) in the practical applications, the case of loose soils must definitely be taken into account for the possible failure and post-failure stage scenarios, (ii) the case of dense soils also deserves special attention because, depending on slope geometry and boundary conditions, it may correspond to scenarios of brittle localized failures that imply a sudden acceleration of the failed mass, which causes a slide to turn into a flow.

Acknowledgement

The authors would like to dedicate this paper to the memory of the recently departed Giuseppe Sorbino. His vitality, optimistic nature, and many other human and scientific qualities will be missed very much.

References

Pastor, M., Li, T., Liu, X., and Zienkiewicz, O.C. 1999. Stabilized low-order finite elements for failure and localization problems in undrained soils and foun-

Fig. 12. Ratio of equivalent plastic strain to its maximum value (y-axis) versus ratio of mean effective pressure to its initial value (y-axis) for different analyzed cases.

